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In this paper we provide a detailed description of the interaction of solutal 
convection and morphological instability in the presence of a model boundary-layer 
flow. We present a detailed investigation of the structure of the marginal surfaces in 
Rayleigh-number, Sekerka-number, Reynolds-number space associated with a linear 
stability analysis. We give mathematical arguments and physical mechanisms to 
explain the results and present a coherent description of this complicated situation. 
We identify two new modes, one convective and one morphological. We show that 
the oscillatory so-called ‘mixed’ modes that result from the coupling of morpho- 
logical and convective modes play a central role in the unfolding of the solution 
structure by the shear flow. This flow has the effect of decoupling the convective and 
morphological modes. 

1. Introduction 
The unidirectional solidification of a binary alloy in a temperature gradient is the 

main technique by which many electronic materials are produced. These materials 
are used in the fabrication of electronic devices such as microprocessors, memory 
chips and infra-red detectors. The rapid development of modern electronic 
technology over the last thirty years has made ever increasing demands on the 
quality of these materials, which in turn has stimulated increasing theoretical 
interest in the mathematical modelling of unidirectional solidification. 

In a terrestrial environment the presence of gravity gives rise to convection in the 
melt. This is recognized to have a profound influence on the dynamics of the freezing 
solid-liquid interface and hence the quality of the solidified material. In particular, 
flow in the melt affects the heat and mass transfer within the system and gives rise 
to spatial and temporal variations in the flow and composition of the melt. This 
results in a crystal with non-uniform physical properties, such as alloy composition 
or lattice defect density, which affect the electronic performance of devices made 
from it. 

In the absence of flow in the melt it has long been recognized that a planar 
solid-liquid interface of a solidifying alloy may experience a transition to a non- 
planar state. This is known as the morphological instability (Rutter & Chalmers 
1953). The physical mechanism by which this occurs can be identified with the 
variation of the freezing temperature of the molten alloy with its composition, which 
under certain growth conditions, may result in the formation of a region of melt 
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below its freezing temperature adjacent to the interface. In this situation the melt is 
said to be constitutionally supercooled. The linear stability analysis of this situation 
was first conducted by Mullins & Sekerka (1964) who theoretically clarified the 
notion of constitutional supercooling. They only considered stationary modes of 
instability. It is only recently (Coriell et al. 1987) that the exchange of stabilities 
has been proved for morphological instability under certain conditions upon the 
thermal field. The first weakly nonlinear investigation of the morphological 
instability was conducted by Wollkind & Segel (1970) and a numerical investigation 
of the fully nonlinear regime was first performed by Ungar & Brown (1984), using 
numerical continuation techniques. For details of more recent developments in this 
area the reader is referred to the review by Coriell, McFadden & Sekerka (1985). 

Convection in the melt can be identified with two different mechanisms : buoyancy 
induced flow due to  gravity or forced flow due to large-scale fluid motion in the melt. 
Forced flows may arise by, for example, stirring of the melt, which results in the 
formation of a boundary-layer flow adjacent to the interface. The inclusion of 
convection substantially complicates the mathematical analysis. For example, i t  
results in a non-autonomous differential operator in the specification of the linear 
stability problem which in general has no explicit analytic solution. Moreover, i t  
increases the number of non-dimensional control parameters, which when combined 
with the additional complexity of the solution structure has resulted in difficulty in 
obtaining a coherent view of this situation. 

The convective mode of instability due to buoyancy exists in the absence of a 
deformable freezing interface. It is generated by unstable density gradients due to  
the base state, which consists of an exponentially decaying composition into the 
melt. This problem was first considered by Gershuni & Zhukovitskii (1976) and more 
recently by Hurle, Jakeman & Wheeler (1983). The convective mode is most unstable 
a t  order-one wavenumbers (with respect to the characteristic solute diffusion length) 
via a stationary mode of instability, with a critical Rayleigh number that depends 
solely on the segregation coefficient, k .  

Coriell et al. (1980) were the first to consider the interaction of both buoyancy and 
morphological modes of instability together. They conducted a linear stability 
analysis and gave numerical results for a model lead-tin alloy. They found a t  high 
enough growth rates that the system is unstable to a morphological mode of 
instability characterized by a large critical wavenumber. Beneath a certain value of 
the growth rate the system is unstable to a convective mode with a much lower 
critical wavenumber, in which solutally induced buoyancy effects predominate. 
Thermal convection was only found to be significant at very low growth rates. 
Subsequently, Hurle, Jakeman & Wheeler (1982) and Caroli et al. (1985) also 
considered this situation, but in more detail and in the absence of thermal 
convection, by employing semi-analytical methods. 

It emerges from these works that the morphological mode is very weakly affected 
by the buoyancy-induced flow because of the short lengthscale associated with the 
high critical wavenumber of the morphological mode inhibits its influence. However, 
a t  order-one wavenumbers a much stronger coupling exists which results in two so- 
called ‘ mixed ’ modes which connect the stationarily stable morphological modes at 
higher wavenumbers to the stationarily stable convective modes at lower 
wavenumbers. For the material parameters and growth conditions considered the 
mixed modes were not found to be the most unstable. Schaeffer & Coriell (1982) 
repeated these calculations for succinitrile containing ethanol and found that under 
some growth conditions the mixed modes could be the most unstable. Jenkins (1990) 
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also found that the mixed modes could be the most unstable, but only when the effect 
of capillarity is very strong. The weakly nonlinear development of the coupled 
problem has been addressed by Jenkins (1985a, b )  who found that hexagonal 
planforms were preferred. Developments in this area are reviewed by Glicksman, 
Coriell & McFadden (1986). 

The effect of a boundary-layer flow on the morphological mode of instability was 
first considered by Delves (1968, 197 i),  who considered the imposition of quadratic 
and Blasius boundary-layer flows adjacent to the interface. More recently Forth & 
Wheeler (1989) considered the effect of another model boundary-layer flow, namely 
the asymptotic suction boundary-layer profile. They showed, using both analytical 
and numerical techniques that the hydrodynamic stability of the boundary layer was 
largely unaffected by the presence of the freezing interface and that the effect of the 
flow on the morphological mode of instability was to generate travelling waves. 
Coriell et al. (1984) considered the effect of a plane Couette flow on both the 
morphological and convective modes for the model lead-tin alloy. They concluded 
that the effect of the flow was to decouple the two modes. McFadden, Coriell & 
Alexander (1988) considered the effect of a stagnation-point flow, but limited their 
analysis to considering only modes perpendicular to the flow. 

The coupled problem in the presence of a shear flow has been investigated by Davis 
and his co-workers (reviewed by Davis 1990) by exploiting different limits of the 
problem as the segregation coefficient becomes small or the capillarity coefficient 
large, which permits the derivation of nonlinear amplitude equations for long- 
wavelength modes. 

In this paper we seek to build on the work discussed above to investigate the effect 
of a boundary-layer flow, modelled by the asymptotic suction boundary-layer 
profile, on coupled morphological and convective instability. In comparison to 
previous work we provide a very detailed description of the complicated solution 
structure of the eigenvalue problem that arises from the linear stability analysis. 
From this we employ both mathematical and physical arguments to elucidate the 
interaction between convection in the melt and the freezing interface. Unlike 
previous workers we present our results in terms of the non-dimensional control 
parameters : the Rayleigh number, Ra; Reynolds number, Re; and Sekerka number, 
Sk; in order to describe the marginal surface in (Sk,Ra,Re, y)-space, where y is the 
wavenumber of the disturbance. This allows us to interpret our results as being 
applicable to a wide range of materials under common growth conditions, other than 
just the lead-tin alloy specifically considered here. We show that the interaction of 
buoyancy and the interface gives rise to two morphological and two convective 
modes, both of which are stationary, and in addition two mixed modes which are 
overstable. The introduction of flow breaks a symmetry of the differential operator 
and results in an unfolding of the solution structure. The mixed modes play a key role 
in relating the different modes. We are able to provide a coherent physical 
description of the effect of the boundary-layer flow in order to understand the 
unfolding. In this description we identify the competition between the unperturbed 
and perturbed flow as favouring backward and forward travelling waves respectively, 
which, when combined with the opposite phase differences associated with the 
convective and morphological modes results in a sympathetic interaction between 
the backward travelling mixed mode and the morphological modes, and the forward 
travelling mixed mode and the convective modes in the presence of an imposed 
boundary-layer flow. 

In the next section we briefly describe the model and give the dimensionless 
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governing equations and steady state associated with the planar interface. In  $ 3  we 
conduct the linear stability analysis. In $4 we describe the numerical method and in 
$55 and 6 give our results. In view of the complexity of the problem and its solution 
structure we present the results in stages. In  $ 5  we describe the effect of buoyancy 
alone. We section the marginal surfaces in (Sk,  Ra, y)-space on planes Ra = constant. 
We display the eigenfunctions associated with the different modes and discuss their 
identification in terms of the relative phase of the perturbed flow and interface 
deformation. We show that either convective or morphological modes will be the 
most unstable depending on the ratio of the Rayleigh number to the Sekerka number 
and generalize this criterion to alloys for which the capillarity parameter is small and 
the Schmidt number large. I n  $6.1 we discuss the effect of a shear flow alone and 
provide physical arguments for the formation of backward and travelling waves. In 
$6.2 we describe the effect of flow by sectioning (Sk, Ra, y)-space on planes 
Ra = constant, but for a Reynolds number of 5. 

2. The model 
We consider a dilute binary alloy solidifying vertically upwards due to the 

presence of an imposed temperature gradient. The solid-liquid interface is initially 
planar and advances with speed V, in a direction opposite to gravity. We shall 
consider the breakdown of this state to both convective and morphological 
instability. Further, we suppose that the principal effect of large-scale convection in 
the melt upon the interface is to produce a momentum boundary-layer flow adjacent 
to it. We simply model this flow by assuming that i t  induces a lateral velocity 
component U ,  outside the boundary layer. We also assume that because typically 
the diffusivity of solute (the dilute component of the alloy) is much less than that of 
both momentum and heat, large-scale transport processes in the melt ensure that the 
concentration of solute is constant in the bulk of the melt and takes the value C,. 
The system configuration is shown in figure 1.  To model this situation we employ a 
generalization of the one-sided model (Langer 1980) to include fluid motion in the 
melt. Thus we make the frozen temperature assumption in which the temperature 
field T ( = TO + 9 z * )  is one-dimensional, depending linearly on the vertical coordinate 
z*. Here To is the temperature of the planar solid-liquid interface and 9 is the 
temperature gradient. This results from assuming that latent heat effects are 
negligible, the thermal conductivities of both phases are equal and the thermal 
diffusive lengthscale is much greater than the solute diffusive lengthscale. We also 
assume that diffusion of solute in the solid phase is negligible. The melt is modelled 
by an incompressible Newtonian Boussinesq fluid in which the density depends solely 
upon the solute concentration. 

We take a coordinate system moving a t  speed V, coincident with the average 
position of the initially planar interface. Further, we non-dimensionalize the system 
with respect to the characteristic scales of the solute field by defining 

where a superscript asterisk represents a dimensional quantity, x is the position 
vector, t is time, u is the velocity in the melt and C is the solute concentration in the 
melt, p is the pressure and z = h(x,  y, t )  is the interface position. Here p and b are the 
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FIGURE 1. Configuration diagram. 

density of the melt and the diffusivity of the solute in the melt. The governing 

k 
equations are then 

= - V p + V 2 u - R a - C k ,  
l - k  

ac 
at 
--+u.vc = VZC, 

v - u  = 0. 

We assume that there is no density change on solidification and hence conservation 
of mass across the interface gives that 

the no-slip condition at the interface gives that 
( u + k ) - n  = 0 ,  z = h ( x , y , t ) ,  

( u f k )  x n = 0, z = h(x, y, t ) ,  

conservation of solute there implies that 

-- - ( k - l ) ( l + h , ) k - n C ,  z = h ( x , y , t ) ,  ac 
an 

and the assumption of local thermodynamic equilibrium there gives 

S k - l h = - ( C - ; ) + U X ,  k z = h ( x , y , t ) .  
k - 1  

Further, far from the interface we have that 

C + l ,  u + R e i - k  as z - t o o .  

Here i , k , n  are the unit vectors in the x , z  directions and the unit normal to the 
interface z = h(x, y, t )  respectively and X is the curvature of the interface, which is 
taken to be negative for projections into the melt. The dimensionless groups 
controlling the system are 

c, @qE( 1 - k )  mC,(k- 1 )  V, T*rV, k , R e = - - ,  urn Ra = , Sk= , % =  
v k e  kD9  m C , d ( k - l )  V, 

V 
S C = -  k, 

ij’ 



66 S. A .  Forth and A .  A .  Wheeler 

where Ra is the Rayleigh number, Sk the Sekerka number, 49 the dimensionless 
capillarity parameter, Re the Reynolds number, Sc the Schmidt number and k the 
segregation coefficient. Here g is the acceleration due to gravity, oi. the coefficient of 
volume expansion, v the kinematic viscosity, m the slope of the liquidus curve, r the 
dimensional capillarity coefficient and T* the freezing temperature of the pure alloy. 

2.1. Steady state 

We exploit an exact boundary-layer solution of the Navier-Stokes equations, 
namely the asymptotic suction boundary-layer profile, to provide the steady-state 
flow corresponding to a planar interface. Thus 

where U, = Re[l-exp (-z/Sc)], in which the diffusion of both solute and vorticity 
away from the interface are balanced by advection towards the interface, due to  its 
advance into the melt. 

1 - k  
k uo = (Uo(z) ,  0 ,  - l ) ,  C, = 1 +-e-z, 

3. Linear stability analysis 
We now conduct a linear stability analysis of the above steady state and put 

u = uo + ul(z )  exp [i(a(x- c t )  +By)], 

C = C,+ C,(z) exp [i(a(x-ct) +By)], 

h = H,exp[i(a(x-ct)+&)], 
where a and /3 are the wavenumbers in the x- and y-directions and c = c,+ici is the 
complex wave speed, c, is the wave speed in the x-direction and aci is the linear 
growth rate. These forms, when inserted into the linearized governing equations and 
boundary conditions give the following eigenvalue problem for the complex wave 
speed c, and C,(z) and Wl(z), the perturbed solut,e and perturbed axial component of 
the velocity : 

k 
1-k {[D2+S~-1(D-ia(U,-c))-yY2] [D2-y2]+iaU;;Sc-l) W, = -y2Ra-C,, z 2 0, 

(1)  

(2) 
k - 1  

[D2+D-y2-ia(Uo-c)]C1 = - k W l e x p ( - z ) ,  2 2 0 ,  

w,=o, z = o ,  (3) with 

ia Re k 
DWl- c, = o ,  z = o ,  

Sc(k- 1 )  (Sk- l -  1 +%y2)  

c, = o ,  z =  0, 1 (1 - k )  (Sk-' +49y2) +iac-  1 
[D+ Sk-'-1+49y2 

(4) 

and Dwl ,D2~, ,C1+0 as z + c o ,  (6) 
where D = d/dz, and y = (az+/?2)~ is the wavenumber of the disturbance. The 
interface deflection is given by 

(7) 
k 

H,(Sk-'- 1 +%y2) = ---C,(O). 
k - 1  

The above eigenvalue problem (1)-(6) is specified by three control parameters : 
Ra,Re,Sk; and three dimensionless material parameters: k, Sc, and %, which we 
regard as fixed for a given alloy and growth conditions. Our aim is to  determine the 
relation f(a, /3, cr, ci, Ra, Re, Sk) = 0, defined by the above eigenvalue problem. In 
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particular we are interested in the marginal states given by ac, = 0, i.e. 
f(a, /?, c,, 0, Ra, Re, S k )  = 0. We now make some remarks regarding this eigenvalue 
problem . 

If the wavenumber in the direction of the flow, a, is zero (though the complex wave 
speed -iac is not necessarily zero), then the forced flow plays no role in the 
determination of the eigensolution and is thus equivalent to setting the Reynolds 
number to zero. This result was first noted by Delves (1968) and more recently by 
Coriell et al. (1984). This is because if a = 0 then the wave vector of the disturbance 
is normal to the direction of the boundary-layer flow, in which case the forced flow 
does not contribute to the lateral transport of the perturbed solute and momentum. 

We also note that if u = (Wl(z), C,(z), H I ,  Ra, Re, a, y ,  c ) ~  is one eigensolution of 
(1)-(6) then so is u' = (W:(z), C:(z), H:,Ra, -Re, a, y ,  - c * ) ~ ,  where an asterisk 
denotes complex conjugate. Thus, changing the sign of the Reynolds number does 
not affect the stability of the system since the growth rate is still mi, but the wave 
speed is now -c,, the same wave travelling in the opposite direction. This simply 
corresponds to the fact that the imposed flow breaks the left-right symmetry of the 
system about the plane II: = 0. 

We confine our attention to systems in which the segregation coefficient is less than 
unity, and we observe from (7) that the sign of (Sk-l-  1 +4Yy2) determines whether 
the interface and perturbed interfacial solute concentration have the same or 
opposite phase. Situations in which (Sk-' - 1 + %y2)  < 0 we shall refer to in this paper 
as constitutionally supercooled, in which case they are in phase; otherwise the 
system is not supercooled and they are in antiphase. This definition of constitutional 
supercooling incorporates a capillarity term ( Uy2), this differs from the standard one 
which requires that Sk-'-1 < 0, due to Rutter & Chambers (1953). 

4. Numerical procedure 
In  general the eigenvalue problem (1)-(6) does not admit an analytical non-trivial 

solution and so we resort to a numerical investigation, in which case there are two 
non-trivial matters that need to be addressed. The first concerns the application of 
the far-field boundary conditions (6) which have to be imposed a t  a finite value of z ,  
zend, say, and the second, the question of how to pose a normalization condition to 
ensure a non-trivial solution. 

Previous authors (for example Coriell et al. 1980, 1984) imposed the far-field 
boundary conditions (6) at z = zend directly. They found that, provided z,,d was 
sufficiently large, their solutions were independent of zend and the exact form of the 
boundary conditions they used. In  order to achieve computational efficiency by 
making zend as small as possible we have adopted 'constant tail conditions' by 
extending the results reviewed by Ng & Reid (1980) for dealing with the 
hydrodynamic stability of the asymptotic boundary-layer profile, to include the 
solute field. The details of this analysis are given by Forth (1989) and result in the 
following boundary conditions to be applied at z = ze,d: 

[D+i+Rc]C1  = 0, (8) 

(9) 

where R, = + [ ~ S C - ~  + y2 + iaSc-'(Re - c)]; and R, = + [a+ y2 + ia(Re - c) ] ; .  
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The second problem, arising from the nature of the eigenvalue problem, is that we 
need to specify an additional inhomogeneous boundary condition by which to 
normalize the eigensolution (Keller 1976). We take C,(O) = 1, since for morphological 
and convective instabilities we anticipate there to be a non-zero perturbation to the 
solute field. This additional boundary condition overdetermines the system. We thus 
fixed the control parameters and solved the governing equations (1) and (2) subject 
to the boundary conditions (3), (4), (8), (9), (10). The residual error in the remaining 
boundary condition (5) was then determined and the wave speed c iterated until this 
boundary condition was satisfied to a given numerical precision. The numerical 
integration was performed using SUPORT (Scott & Watts 1975), a two-point 
boundary-value problem solver for linear systems of ordinary differential equations. 
The NAG nonlinear solver C05NBF was employed to update the value of c.  All the 
calculations presented here refer to the model lead-tin alloy considered by Coriell 
et al. (1980) which corresponds to 92 = 6.131 x Sc = 81, and k = 0.3. I n  
presenting our results we first consider the system in the absence of a shear flow, 
Re = 0. 

5. The effect of buoyancy alone: Re = 0 
In  the absence of a flow there is no preferred direction and without loss of 

generality we may set the wavenumber in the y-direction, /3, to zero, in which case 
a = y.  We determine the marginal surfaces in (a, Ra, Sk)-space. In  order to elucidate 
these surfaces we section this space by planes of constant Rayleigh number, varying 
between 0 and 21. These are shown in figures 2-7. Each figure consists of two 
diagrams, the upper shows the marginal curves in (a,Sk)-space and the lower the 
corresponding (a, c,)-space along the marginal curves. In the upper diagram shaded 
arcas represent unstable regions of parameter space in which there is at least one 
positive value of the growth rate aci. Below we describe the effect of successively 
increasing the Rayleigh number from zero and hence the effect of increasing 
buoyancy forces on the system. 

5.1. The morphological mode : Ra = 0 and Re = 0 

In figure 2 we show the situation corresponding to Ra = 0 in which there is no flow. 
Thus the system is only rendered unstable via a morphological mode of instability. 
The marginal curve for morphological instability and the corresponding eigenmode 
are denoted M1. The wave speed along this marginal curve is zero, in agreement with 
the principal of the exchange of stability which can be proved in this case (Coriell 
et al. 1987). For negative Sekerka number the system is unstable except for the region 
at  high wavenumber where capillarity stabilizes the system. Further, the line Sk  = 0 
also denotes a stability boundary a t  which the linear growth rate is discontinuous, 
aci+-m as Sk+O+ and ac i++co as Sk+O-. This is because a small positive 
Sekerka number corresponds to a strongly stabilizing large positive temperature 
gradient, whereas a small negative Sekerka number corresponds to a highly 
destabilizing large negative temperature gradient. Thus we consider the plane S k  = 0 
as a branch cut as regards the morphological mode of instability. It is for this reason 
that Sk < 0 is an unphysical region of this parameter space corresponding to a 
completely undercooled melt. We denote the stability boundary S k  = 0 and the 
branch of the morphological mode at high wavenumber which lies in the region 
S k  c 0 by UM, as indicated in figure 2. 
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M1 UM 

0.1 1 10 100 
a 

FIGURE 2. The dependence of the Sekerka number, Sk, and wave speed, c, on the wave number, a, 
of a marginally stable disturbance for the case Ra = 0 and Re = 0. Shaded areas represent regions 
in (a, Sk)-space in which the system is unstable. The solid curves labelled M i  and UM represent the 
marginal states of the different branches of the purely morphological mode. 

5.2. The interaction of convective and morphological modes: Ra 0 and Re = 0 
From figure 3 we observe that on increasing the Rayleigh number to 7 another 
distinct unstable region is present. It exists a t  negative values of the Sekerka number 
and its marginal curve is indicated by a broken line; we denote it C1. The maximum 
critical Sekerka number for this mode occurs a t  a wavenumber of approximately 
0.27. Further, its wave speed is also zero and so it is stationarily stable. Below we 
identify this as a convective mode of instability. 

The minimum of the marginal curve corresponding to the morphological mode of 
instability, M1, is very slightly affected; a weak stabilization being detected. At low 
wavenumbers the morphological branch has been displaced by two coincident 
marginal curves corresponding to overstable modes of instability, denoted X1 and 
X2, which we refer to as mixed modes. These two branches are indicated in figure 3 
by a dotted line and correspond to a pair of real eigenvalues for the complex growth 
rate, +c, and -c, respectively, corresponding to a pair of travelling waves. We 
denote the portion of the marginal curve M1 displaced by the mixed modes as C2, 
which is indicated in figure 3 by a dashed line. Below we show that the eigenmode 
associated with the C2 curve is convective in nature. 
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c1 _ _ _  MI UM 
f 

c2 ,..:.j;<2 

0.1 I 10 100 
a 

FIGURE 3. As figure 2 but for Ra = 7 and Re = 0. The dashed curve labelled C1 represents a 
convective mode and the dotted curves labelled X1 and X2 represent the two overstable mixed 
modes. 

At this Rayleigh number of 7 and a wavenumber about 0.27 the system is 
morphologically unstable to the mixed modes X1 and X2 for a sufficiently large 
value of the Sekerka number. As Sk is diminished the system is stabilized a t  a 
positive Sekerka number, which on passing through zero renders the system 
morphologically unstable via the mode UM. Further reduction of the Sekerka 
number renders the system also unstable to the convective mode C1. 

I n  figure 4 we show the situation for Ra = 11. The convective branch C1 has been 
further destabilized and the system is now convectively unstable at small positive 
Sekerka numbers over a small range of low wavenumbers. The other significant 
change is that the mixed modes are also destabilized as they extend to lower values 
of the Sekerka number. Stability diagrams for Rayleigh numbers of 15, 19 and 21 are 
shown in figures 5 ,  6 and 7 .  As the Rayleigh number increases the mixed modes X i ,  
X2 and the convective mode C1 approach one anotJher and have by Ra = 21 joined, 
resulting in a new stationary mode. We denote the mode along this connection by 
M2. The result of this connection is that the marginal curves X1 and X2 are 
separated into distinct portions. The influence of the convective branch on the mixed 
modes is manifested by the wave speed along the latters’ marginal curves, which is 
reduced as the two modes approach one another. This results in a ‘neck’ forming in 
the wave speed curve at Ra = 19 where the wave speeds of the forward and backward 
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Sk 

0.1 1 10 100 
a 

FIQURE 4. As figure 3 but for Ra = 11 and Re = 0. 

travelling waves, X1 and X2, both approach zero. At Ra = 21 this effect is increased 
to give a range of wavenumbers where the wave speed is zero, corresponding to the 
M2 mode, as well as an isolated loop at  higher wavenumbers corresponding to the 
portion of the X l  and X2 marginal curves connecting the M2 marginal curve with 
the M i  and C2 marginal curves. 

5.2.1. Detailed study of the case R a  = 15, Re = 0 
We now investigate the interaction between the different modes in more detail by 

concentrating on the case Ra = 15. In figure 8 we plot the eigenfunctions over one 
wavelength in the x-direction for five different points on the marginal curves given 
in figure 5 : the minimum of the morphological curve M1, the minima of the mixed- 
mode branches X1 and X2, the maxima of the convective branch C1 and a point on 
the branch C2. For each case the eigenfunction has been normalized so that the 
concentration in the bottom left corner is unity and we display the perturbed stream 
function (top diagram of each pair), the perturbed concentration (the bottom 
diagram of each pair) and the interface deflection which is represented above each 
pair of diagrams together with its amplitude. If the wave speed is non-zero (as is the 
case for the mixed modes X1, X2) then the frame of reference of each plot is 
coincident with the travelling wave. 

We observe that for the convective mode C i  the fluid rises above the troughs in 
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FIGURE 5.  As figure 3 b u t  for Ra = 1.5 and Re = 0. 

the interface and desccnds at its peaks. This is in contrast to the morphological mode 
M1 for which the fluid rises above the peaks and descends above the troughs. The 
maxima of the stream functions for the C1 and M1 modes are approximately 18 and 
0.001 respectively, indicating that the convective mode is characterized by a strong 
flow above an almost planar intcrface compared to the morphological mode M1, 
which is characterized by a deformed interface with a weak baroclinic flow in the 
melt. In the case of the C2 mode the situation is similar to that of the morphological 
mode M1 but with a much stronger convective flow. 

The two mechanisms of morphological and convective instability are in opposition 
in the sense that they induce upflow and downflow above the peaks, respectively. If 
the buoyancy forces are sufficiently strong then upflow from trough to peak 
associated with the morphological mode may be sufficiently buoyant to detach 
before the peak is attained and similarly the slumping flow from peak to trough 
associated with the convective mode of instability may rise vertically before reaching 
the trough. In  either of these cases the buoyant plume would be shifted laterally and 
would cause a phase difference between the solute field and the interface deflection. 
Such a loss of symmetry would result in preferential freezing on one side of the peaks 
resulting in a travelling wave, the mixed mode. Davis (1990)  observed that the 
opposite character of the convective and morphological modes given above may be 
responsiblc for overstability. 
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5.2.2. Physical mechanisms 
To gain further insight into the mechanisms by which the various modes are 

affected by increasing the Rayleigh number we have plotted the real and imaginary 
parts of the complex wave speed as a function of the Sekerka number for several 
different values of the wavenumber, for a fixed Rayleigh number of 15. These are 
given in figures 9 and 10, where the imaginary and real parts of c are given by solid 
and broken lines respectively. In figure 9 we plot these quantities for a = 0.5. At 
negative Sekerka numbers there is a branch for which the linear growth rate aci 
becomes large as Sk + 0- and which we therefore identify as the morphological mode 
UM. Beneath lies a stationary mode which is stabilized as Sk increases and is 
identified as the C1 mode. Below this lies another stationary mode, M2, which, in 
contrast, is destabilized as Sk increases and connects with the C1 mode at a value of 
Sk slightly greater than unity, whereupon the growth rates of the two modes are 
equal. Emanating from this limit point are the two mixed modes, X1, X2, whose 
wave speeds, c, increase monotonically with Sk. They were found to persist up to 
Sk = 20, the upper limit of our calculations. It is clear from the behaviour of the M2 
mode as Sk: --f O+ that it is the continuation of the UM mode to positive values of the 
Sekerka number. 

The situation for a wavenumber of 0.75 is shown in figure 10. As previously, the 
mode UM exists a t  negative values of Sk but is not shown. The structure a t  low 
wavenumbers is similar to  the previous case. However, the two mixed modes are 
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FIGURE 7. As figure 3 but for Ra = 21 and Re = 0. 

found to  be now of finite extent and coalesce a t  the junction of two additional 
stationary modes. The upper one is destabilized and the lower stabilized by 
increasing the Sekerka number. Comparison with figure 5 identifies the lower mode 
as C2 and, below, we find that the upper is the mode M1. It is now evident that  the 
marginal curve corresponding to C2, given in figure 5 represents the C2 mode 
becoming stable as Sk increases and not the morphological mode M1 becoming 
unstable. I n  addition we note that the mode M1 is always unstable for this 
wavenumber and exists only for Sk > Sk,,, where Sk,, represents the value ofSk a t  
the limit point of M1 and C2 as indicated in figure 10.  Thus we should modify the 
stability diagram to include this region of instability to the mode M1 which is not 
bounded by a marginal stability curve; this is shown schematically in figure 11 by 
a hatched region. In  this region the system is unstable to both the modes M1 and C2, 
whereas above the upper boundary of it, given by the chained curve of the C2 mode, 
it is only unstable to  the M1 mode and below the lower boundary of this region, given 
by a dashed curve, neither the M1 or C2 modes exist. 

5.2.3. The efSect of buoyancy on the morphological mode 
We now discuss the effect of buoyancy on the morphological mode M1. We assume 

that k < 1 and than the solute is lighter that  the solvent with gravity acting 
vertically downwards, although the discussion holds mutatis mutandis for k > 1 and 
heavy solute. In  the absence of buoyancy solute diffusion acts to reduce the 
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concentration differences along the interface and thus the perturbed solute is 
maximum at the peaks and minimum a t  the troughs. Hence when buoyancy effects 
are included this lateral concentration gradient results in light, solute-rich fluid 
above the peaks and hence upflow there, with a corresponding downflow above the 
troughs. Thus an effect of buoyancy is to transport more solute to  the peaks from the 
troughs. This is a stabilizing process as an enhanced solute concentration a t  the peaks 
reduces the local freezing temperature which mitigates against any further freezing 
and hence growth of the peak. It is instructive to  conduct an analysis of the 
eigenvalue problem (1)-(6) in the double limit Sc + co , Ra + 0 which gives, after some 
straightforward analysis, that the perturbed axial velocity is 

(11) 

where p, = 6[1+ (1  + 4a2)4]. It is easily shown that, for all 0 < k < 1 ,  W,(z) increases 
monotonically with z and 

Thus the effect of a weak buoyancy force on the morphological mode of instability 
confirms the above physical argument that it will induce an  upflow above the peaks 
of the interface. This analysis also implies that we cannot impose the condition that 
the perturbed axial velocity is zero in the bulk of the melt when buoyancy effects are 
included (although the mean axial velocity over one lateral period of the 
eigenfunction is zero). A similar result was obtained by Riley & Davis (1990) in a 
different asymptotic limit of this problem. 

5.2.4. The effect of the interface on the convective mode 

Consider the convective mode of instability C1. I n  the absence of interface 
deformation this results in a perturbed concentration with maxima below the less 
dense rising plumes of fluid. If the Sekerka number is sufficiently small then the 
system will not be supercooled and hence, as noted a t  the end of $3, the interface 
deformation and the perturbed solute will be in antiphase. Thus troughs will form 
beneath the upflow plumes. This is confirmed by the (stable) C1 mode shown in figure 
10 (c) which corresponds to  Sk = 0.8 and is therefore not supercooled. If however the 
melt is supercooled then i t  appears from the neutral C1 mode shown in figure 8, for 
which Sk = 1.109, that the system accommodates the requirement that  the 
interfacial deformation and perturbed solute Concentration be in phase by the 
formation of a concentration boundary layer adjacent to the interface. It is not clear 
why the system reacts in this way, rather than allow upflow above the peaks and 
therefore alleviate the need for such a solute boundary layer. Hence the effect of a 
freezing interface on the convective mode of instability is a downflow above the 
peaks and an upflow above the troughs as conjectured by Davis (1990) for the case 
of a weakly deformable interface. Our results given in figures 2 to 7 indicate that 
increasing the Sekerka number increases the Rayleigh number for the onset of the 
convective mode C1 and therefore has a stabilizing effect on the convective mode of 
instability ; however, we are unable to provide a physical mechanism for this. 
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FIGURE S(u-d) .  For caption see facing page. 
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FIGURE 8. The eigenfunctions representative of the different modes for the case Ra = 15 and 
Re = 0. Each figure displays the eigenfunctions at the marginal states indicated by the points 
marked ( w e )  in figure 5 and shows the perturbed stream function (above) and the perturbed solute 
concentration (below). We have normalized each eigensolution so that the perturbed concentration 
a t  ( 0 , O )  is unity. Above each pair of contour plots is indicated the perturbed interface deflection, 
its phase but not its amplitude is correctly given. The maximum contour values of the perturbed 
stream function and solute concentration are respectively: X1, X2, 1.75, 1 ;  C1, 17.5, 1.5; C2, 0.8, 
1 ; M1, 0.001, 1. 
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FIGURE 9. The dependence of the real and imaginary parts of the complex wave speed, e = c, + ic, 
for a wavenumber a of 0.5 and a Rayleigh number of 15. The dashed and solid curves represent the 
real and imaginary parts respectively. The quantity ac, is the growth rate of the disturbance. 
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5.2.5. Mathematical characterization of the modes 

Above, we have identified the different eigenfunctions as convective or morpho- 
logical, based on physical arguments. We now attempt to justify this description 
from a more mathematical standpoint based on arguments given previously by 
Caroli et al. (1985) and McFadden et al. (1988). Our starting point is to  describe them 
individually in isolation as pure modes. Thus in the absence of convection the linear 
growth rate of the morphological mode would only depend on Sk and similarly that 
of the convective mode (in the absence of a freezing interface) only on Ra.  Therefore 
their dispersion relations may be written as 

F,(a, Sle) + icxc = 0, 



X 

FIQURE 10. (a) As figure 9 but for a = 0.75. (kf) The eigenfunctions at the points marked (kf) 
respectively in (a) and shows the perturbed stream function (above) and the perturbed solute 
concentration (below). We have normalized each eigensolution so that the perturbed concentration 
at ( 0 , O )  is unity. Above each pair of contour plots is indicated the perturbed interface deflection, 
its phase but not its amplitude is correctly given. The maximum contour values of the perturbed 
stream function and solute concentration are respectively: X 1 ,  0.8, 1 ; C1, 2, 1 ; C2, 0.8, 1 ; M1,0.6,  
1 ;  M2, 1.5, 1 .  
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FIGURE 1 1. The regions of stability in (a, Sk)-space. The shaded areas represent regions in which 
there is a t  least one unstable mode and the cross-hatched area schematically represents the region 
in which both the Mi and C2 modes are unstable which is bounded below by the locus of the limit 
points Sk,, which is not a marginal state. 

Sk Sk 
FIQURE 12. Schematic representation of the real and imaginary parts of the wave speed for 

(a)  the uncoupled and ( b )  weakly coupled convective and morphological modes. 

and Fc(a,Ra)+iac = 0,  

respectively, where F, and F, are complex functions of two real variables. Thus in 
(a,c)-space they would be represented by the curves labelled M and C as shown 
schematically in figure 12. The dispersion relation for the uncoupled system may be 
given as 

{F,(a,Xk)+iac}{Fc(a,Ra)+iac} = 0. 

A model of the weakly coupled system is then 

{F,(a, Sk)  + iac} {F,(a, Ra) + iac} = - cg(a, Sk ,  Ra), 

where 6 is a small parameter representing the magnitude of the coupling and the 
function g determines its precise nature. 

The complex wave speed is then given by 

Away from the crossing point, where F,(a,Sk) = F,(a, Ra) ,  this may be expanded to 
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FIGURE 13. Schematic representation of the effect of increasing the Rayleigh number on the growth 
rate ac ,  as a function of the Sekerka number. This indicates the evolution of different marginal 
states with increasing Rayleigh number observed in figures 2 to 7. 

the following expression for the wave speeds c, and c ,  of the convective and 
morphological modes respectively : 

Thus, away from the crossing point the coupling acts as a regular perturbation upon 
the complex wave speed. However, in the vicinity of the crossing point the above 
expansions are singular and from (13)  we find that if g(a,Sk,Ra) > 0 then the 
complex wave speed remains purely imaginary, but if g ( m ,  Sk, Ra) < 0 the wave speed 
has a non-zero real part resulting in the mixed modes X1, X2, see figure 12(b ) .  

Away from the crossing point where the interaction is weak we regard the coupling 
as perturbing the complex wave speed and so we identify a mode away from the 
crossing as convective or morphological depending on its proximity to the decoupled 
convective and morphological modes. Thus M1 and M2 are morphological modes and 
C l ,  C2 convective modes. 

The above dependence of the complex wave speed upon the Sekerka number 
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occurs a t  all the non-zero values of the Rayleigh number that we have investigated. 
In particular the structure translates upwards in (c , ,Sk)  parameter space as the 
Rayleigh number increases, because such an increase in the Rayleigh number 
destabilizes the convective modes causing the C1 and C2 modes in this space to move 
to larger values of ci as Ra increases. This is the key to understanding the marginal 
stability curves given in figures 2-7 for different values of the Rayleigh number. 

We illustrate this by considering the evolution of the modes corresponding to  
01 = 0.5 with increasing Rayleigh number. This is shown schematically in figure 13. 
At Ra = 0 only the morphological mode is present and there is a single non-zero value 
of Sk for which it is a marginal state (figures 13a and 2). Increasing the Rayleigh 
number results in the formation of the Ml/C2  and C1/M2 branches a t  high and low 
values of the Sekerka number respectively which are connected by the overstable X1 
and X2 modes. This provides marginal states corresponding to C1 and X1/X2 modes 
(figures 13b and 3 ) .  Increasing the Rayleigh further results in these two marginal 
states approaching one another and finally coalescing (figures i3c and 4, 5,  6). 
Subsequent increase in the Rayleigh number results in the birth of the single 
stationary M2 mode from the above coalescence (figures 13d and 7 ) .  

A similar argument explains the forma$ion of the C2 marginal state a t  slightly 
higher values of the wavenumber. 

In  figure 10 we display plots of the eigenfunctions corresponding to different values 
of the Sekerka number for 01 = 0.5 and Ra = 15 which are representative of the 
different modes. We note that both the morphological modes do indeed have upflow 
above the peaks as argued above ; however, the perturbed concentration relative to 
the perturbed interface and flow field of the M1 and M2 modes differ by a phase of 
R. The convcctive modes C i  and C2 also show a phase change, but now in the 
interface dcflection relative to the perturbed flow and concentration fields, which 
results in the two modes having different flow above the peaks. Both these phase 
changes are due to the M1 and C2 modes corresponding to  a constitutionally 
supercooled situation in comparison to the M2 and C1 modes, in which this is not the 
case, see the end of $3. 

From the above results and discussion we conclude that upflow or downflow a t  the 
cell peaks does not, in general, characterize whether a mode is morphological or 
convective, but is best done by determining its proximity to the uncoupled modes in 
(c, Sk,  Ra)-space. 

5.2.6.  Discussion of critical modes 

I n  figure 14 we plot the variation of the minimum Sekerka number of the M1 and 
X 1 ,  X2 modes as well as the maximum of the C1 mode with Rayleigh number. Above 
the curves labelled M i  and X1, X2 the system is unstable to the Mi and X i ,  X2 
modes respectively and below the curve labelled C1 the system is unstable to the C1 
mode. The shaded region indicates where the system is stable to all three modes. As 
this region is bounded by the M1 and C i  modes, transition to  instability will only be 
via stationary convective or morphological modes ; overstability will not be apparent 
a t  the onset of instability. This statement is true for all growth conditions of the 
model lead-tin alloy for which 42 = 6.131 x lop4. For lead-tin (and indeed many 
similar alloys) the dimensional capillarity parameter is small, which results in the 
dimensionless capillarity parameter 42 also being small for a wide range of growth 
conditions specified by the growth rate V, and the bulk concentration C,. Thus we 
expect the structure adumbrated above for the particular case 42 = 6.131 x lo-* to 
only be very weakly dependent on V, and C, and thus representative of a wide range 
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FIGURE 14. The regions of (Ra,Sk)-space in which the different modes are unstable. Above the 
dotted and solid curves the system is unstable to the mixed, (Xl ,  X I )  and morphological ( M i )  modes 
respectively. Below the dashed curve the system is unstable to the convective mode C1 and below 
the line Sk = 0 it is unstable to the morphological mode UM. The shaded area represents the region 
where it is stable to all the different modes. 

of growth conditions typical of the unidirectional solidification of the lead-tin alloy, 
provided the dimensionless capillarity parameter is small. We note that Jenkins 
( 1 9 8 5 ~ )  found the transition to instability to be via the mixed modes for the situation 
when % is not small. 

Coriell et al. (1980) also investigated this situation. They worked with dimensional 
quantities and found for a fixed temperature gradient of 200 K cm-' that the system 
was unstable to a morphological mode for sufficiently large values of the growth 
velocity V, and to a convective mode for lower values. They plotted the marginal 
curves in (a, C,)-space for fixed values of V, and showed that the convective mode 
was not apparent for V, 2 50 pm s-l, but a t  V, = 40 pm s-l it was present and its 
marginal curve was a closed loop in (a, C,)-space. 

5.2.7.  Interpretation in dimensional parameters 

definition of the Sekerka number and the Rayleigh number that 
We can interpret our results in similar dimensional terms. We note from the 

SklRa = K ,  

where K = - m v V t / % g d 3 ,  

which is independent of the far-field concentration C,. Thus to  compare with Coriell 
et al. (1980) we must section the marginal surfaces in (a ,  Sk,  Ra)-space by the plane 
Sk = KRa. From figure 14 we estimate that the system will be unstable to the 
convective mode C1 when K < Kcrit x 0.0795 and stable to the morphological mode 
M1 otherwise. Using the material and growth parameters given in table 1 we 
therefore deduce that the system will be convectively unstable when V,, 6 44 pm s-l, 
which is in agreement with the results of Coriell et a2. Indeed it is possible to 
understand all the marginal stability diagrams given by these authors for different 
values of V, by sectioning the marginal stability surfaces described above by the 
planes Sk = KRa.  

We have not investigated the dependence of the marginal stability surfaces on the 
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Liquidus slope, m -2.33 K wt %-' 
Solute diffusivity, b 
Kinematic viscosity, v 2.43 x om2 s-l 
Acceleration due to gravity, g 
Temperature gradient, Y 

TABLE 1. Material and growth parameters for the model lead-tin alloy 

3 x 10-~  cm2 s-l 

980 cm s - ~  
200 K cm-' 

Coefficient of volume expansion, OZ 5.2 x 10-3 wt w 

Liquid 'r 
I +  + 

0 

Forced flow 

Side of peak 'melts of€' 

0 

X 

Perturbed flow 

FIGURE 15. A schematic representation of the physical mechanisms involved in the formation of 
backward and forward travelling waves due to the presence of a shear flow. The plus and minus 
signs indicate the sign of the perturbed solute concentration at z = 0. 

remaining dimensionless parameters : the segregation coefficient, k, and Schmidt 
number, Sc. However, inspection of the eigenvalue problem (1)-(6) indicates that 

Kcrit = G ( k ) + O ( 8 ~ - ~ ) + 0 ( % )  as SC+CQ, %-to, 
where G(k) is an (unknown) function of a single variable. Thus for many real alloys 
under real growth conditions in which Sc is large and 42 is small the onset of the 
system to convective instability will occur when 

V, < &Ygdi/mv)SG(k):. 

Otherwise the onset will be via a morphological mode of instability. 
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FIQURE 16. A5 figure 3 but for Ra = 7 and Re = 5. 

6. The effect of a shear flow: Re =+ 0 
6.1. Shear $ow alone : Ra = 0 

This situation was studied by Forth &, Wheeler (1989) for the same model lead-tin 
alloy. They showed from an asymptotic analysis of the eigenvalue problem in the 
realistic limit Sc -+ co , as well as a numerical solution, that the effect of the boundary- 
layer flow on the morphological mode of instability was to induce overstability by 
the formation of travelling waves parallel to the flow. For low wavenumber the 
waves travel against the direction of the flow in contrast to the high-wavenumber 
modes which travel in the same direction as the flow, see figure 4 of Forth & Wheeler 
(1989). 

6.1.1. Physical mechanisms 
Here we offer a physical explanation of this phenomena that will allow us to 

interpret the results presented below, when we consider the effect of both buoyancy 
and the boundary-layer flow. At low wavenumbers the gradually varying 
morphology of the interface ensures that the unperturbed boundary-layer flow is the 
predominant mechanism for the convective transport of solute in the perturbed 
system. Hence the perturbed solute is convected downstream and consequently the 
solute maxima of the perturbed solute are displaced downstream of the peaks of the 
interface. This enhances the perturbed concentration downstream of the peaks and 
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FIGURE 17. As figure 3 but for Ra = 11 and Re = 5. 

so results in a local reduction of the freezing temperature which in turn causes the 
interface to relax back towards the colder solid phase. On the upstream side of the 
peaks this mechanism results in the interface advancing into the melt. The net effect 
is to cause the interface to propagate against the direction of the boundary-layer 
flow. We have confirmed this role of the unperturbed boundary-layer flow by 
modifying the asymptotic analysis in the limit Sc + 00 given by Forth & Wheeler 
(1989) to exclude the perturbed flow. This analysis shows that only waves travelling 
against the flow occur. 

In contrast, a t  high wavenumbers the rapidly varying morphology of the interface 
ensures that both the perturbed and unperturbed flow are important in the transport 
of solute of the perturbed system. This results in the perturbed vertical component 
of the flow being approximately +K out of phase with the perturbed solute field and 
interface deformation, with the perturbed concentration maxima and upflow plumes 
displaced to the upstream side of the peaks. This is confirmed by the asymptotic 
analysis of Forth & Wheeler which shows that this phase difference is + O(Sc-'), as 
Sc + 00. The perturbed flow sweeps solute-rich fluid from the troughs in the direction 
of the flow which results in the interface relaxing behind the peaks and advancing 
ahead of the peaks, and consequently the formation of a travelling wave in the 
direction of the flow. These mechanisms are illustrated in figure 15. 
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FIGURE 18. As figure 3 but for Ra = 15 and Re = 5 .  
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6.2. The eflect of both buoyancy and shear pow: Ra =!= 0 and Re 4 0 

In view of the large number of non-dimensional parameters in this problem we have 
only considered modes parallel to the flow by putting = 0. We justify this 
particular choice by noting that it corresponds to the situation when the 
morphological modes are most affected by the presence of the boundary-layer flow, 
see Forth & Wheeler (1989). In order to ellucidate the situation in the presence of 
both flow and buoyancy effects we have repeated the computation of the eigenmodes 
given in $4 but for Re = 5. In figures 16-19 we section (a, Ra)-space for Rayleigh 
numbers of 7, 11, 15 and 17, with Re = 5. 

For Ra = 7 we h d ,  on comparing with the situation in the absence of flow, given 
in figures 3 and 16, that the marginal stability curve associated with the backward 
travelling mixed mode X2 is now smoothly connected onto that of the morphological 
mode M1. We denote the modes of the extension of the M1 mode which have negative 
wave speed as M(X2). In contrast, the marginal curve of the forward travelling 
mixed mode X1 is disconnected from the morphological mode M1 but smoothly 
connected to the convective mode C2; we denote this C(X1). The convective mode 
C1 is slightly stabilized by the presence of the flow which has transformed it into a 
forward travelling wave and is the least affected. Increasing the Rayleigh number 
results in the C(X1) and C1 modes approaching one another and finally coalescing at  
a Rayleigh number between 15 and 17. 
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FIGURE 19. As figure 3 but for Ra = 17 and Re = 5. 

6.2.1. The shear Jlow as an unfolding mechanism 
The above behaviour can be understood by recognizing that the imposition of the 

boundary-layer flow results in a destruction of the left-right symmetry of the system 
which is present when Re = 0. It effectively unfolds the geometric structure 
associated with marginal curves of the non-trivial solutions of the eigenvalue 
problem (1)-(6). I n  particular, the connection between the X1, X2, M1 and M2 modes 
is unfolded. The smooth connection so established between the X2 and M i  mode is 
to be expected in the light of the formation of backward travelling waves by the 
morphological instability a t  low wavenumbers, in the presence of only a shear flow, 
discussed in the previous section. Indeed the variation of the wave speed along the 
marginal curve composed of the M1 and M(X2) modes is qualitively very similar to 
that predicted by the asymptotic analysis in the limit Sc+ 00 given by Forth & 
Wheeler (1989). The physical mechanism associated with this situation given in the 
previous section also explains the presence of the forward travelling wave modes 
C(X1). If the system is not constitutionally supercooled (i.e. Sk-l-  1 + Uy2 > 0) then 
in the absence of a shear flow the perturbed concentration and flow fields of the C1 
mode are in antiphase to the interface deflection, with upflow as well as the perturbed 
concentration maxima above interfacial troughs. However a t  the low wavenumbers 
associated with the C( X i )  modes the predominance of the unperturbed boundary- 
layer flow in contributing to the perturbed lateral solute transport causes these 
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FIQURE 20. The eigenfunctions representative of the different modes for the case Ra = 15 
and Re = 5. Each figure displays the eigenfunctions at the marginal states indicated by the 
points marked (a-d) in figure 18 and shows the perturbed stream function (above) and the 
perturbed solute concentration (below). We have normalized each eigensolution so that the 
perturbed concentration at (0,O) is unity. Above each pair of contour plots is indicated the perturbed 
interface deflection, its phase but not its amplitude is correctly given. The maximum contour 
values of the perturbed stream function and solute concentration are respectively: M1, 0.03, 1 ; 
M(X2), 1.25, 1 ;  C1, 12.5, 15; C(Xl), 2.5, 1 .  
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FIQURE 21 (u-d).  For caption see facing page. 

perturbed concentration maxima to be displaced upstream of the peaks and hence 
the formation of a forward travelling wave, 

In figure 20 the eigenfunctions are presented at the stationary points of the various 
marginal curves for Ra = 15. We observe that for the M i  mode a t  high wavenumber 
the perturbed solute and flow fields are approximately out of phase, in agreement 
with the discussion at the end of the previous section. A comparison of the M(X2) 
mode with its counterpart, X2, in the absence of flow shown in figure 8 shows that 
the perturbed flow is weakened and the interface deflection diminished by the 
presence of a shear flow. The convective C1 mode has been stabilized; both the 
stream function and the interface deflection are less that in the absence of flow, see 
figure 8. The C(X1) mode has a stream function qualitatively similar to the mixed 
mode Xi ,  but the strength of the perturbed flow and the interface deflection are 
greater in the absence of an imposed flow. 

That the forced flow effectively unfolds the eigenfunction solution structure is 
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FIGURE 21. (a, b) The dependence of the real and imaginary parts of the complex wavespeed, 
c = c,+ici for a wavenumber a of 0.75 and a Rayleigh number of 15. The dashed and solid curves 
represent the real and imaginary parts respectively. The quantity ac, is the growth rate of the 
disturbance. (c-h) The eigenfunctions at the points marked (c-h) respectively in figures 21 (a) and 
10(b) and shows the perturbed stream function (above) and the perturbed solute concentration 
(below). We have normalized each eigensolution so that the perturbed concentration at (0,O) is 
unity. Above each pair of contour plots is indicated the perturbed interface deflection, its phase but 
not its amplitude is correctly given. The maximum contour values of the perturbed stream function 
and solute concentration are respectively: M 1 , 0 . 5 ,  1 ; M2, 1.5, 1 ; M ( X 2 ) ,  0.7, 1 ; C1, 2, 1 ;  C2, 1, 1 ; 
C(X2) ,  1, 1. 
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FIQURE 22. The regions of (Ra, Sk)-space in which the different modes are unstable for (a)  Ra = 5, 
( b )  Ra = 50. Above the dotted and solid curves the system is unstable to the unfolded mixed, 
(C(X1)) and morphological ( M i )  modes respectively. Below the dashed curve the system is unstable 
to the convective mode C1 and below the line Sk = 0 it is unstable to the morphological mode UM. 
The shaded area represents the region where it is stable to all the different modes. 

further confirmed from the computation of the complex wave speed as a function of 
Sekerka number shown in figure 21 for a = 0.75 when compared to  their counterparts 
for Re = 0 given in figure 10 (a) .  The solid lines denote ci, where aci is the growth rate 
of the disturbance and the broken lines c, denote the wave speed. The unfolding by 
the flow has transformed the X2 mode to the M(X2) mode which now smoothly 
connects the morphological modes M1 and M2. Further, it has also transformed the 
X1 into the C(X1) mode, which, in a similar way connects the C i  and C2 convective 
modes. This provides further evidence for our classification of the various modes as 
convective and morphological given above; the flow unfolds them so as to  conect 
modes of similar nature. For this reason the flow acts to decouple the morphological 
and convective modes. Indeed the argument given above to model the coupling 
between the convective and morphological modes in the presence of buoyancy only 
can be extended to deal with inclusion of a shear flow. The loss of left-right 
symmetry can be described by requiring that the coupling function g depends on the 
Reynolds number, is complex and has a non-zero imaginary part when Re =k 0, i.e. 
g(a, Sk, Ra, Re) = g,(a, Sk, Ra, Re) + iRe gi(a, Sk, Ra, Re). 

6.2.2. Discussion of critical modes 
I n  figure 22 we show the variation of the minimum Sekerka number of the 

morphological mode M1 and convective mode C(X1), as well as the maximum 
Sekerka number for the convective C1 for different Reynolds numbers of 5 and 50. 
We find that for Re = 5 ,  the system (as in the case of no forced flow) is unstable to  
either the C l  or M i  modes, although now these modes are slowly travelling waves. 
In  fact the wave speed of the morphological mode is insignificant, but that of the 
convective mode is small and positive. However, for a stronger imposed flow with 
Re = 50 the destabilization of the C(X1) mode may result in i t  becoming the most 
unstable for values of the Rayleigh number in excess of 15, in which case a forward 
travelling wave would be observed. 
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7. Conclusions 
In this paper we have conducted a detailed numerical investigation of coupled 

convective and morphological instabilities and the effect of a shear flow upon them. 
We have sought to understand the complex interactions that emerge from our 
numerical investigation, by employing both physical and mathematical arguments. 

In  the absence of an imposed flow, we find that there are two morphological modes 
and two convective modes that are connected by two oscillatory mixed modes. We 
are able to confirm some of the physical mechanisms conjectured by Davis (1990) but 
are not able, in general, to classify a mode as convective or morphological on the 
basis of whether the flow above the peaks in the interface was up or down. Such a 
classification is too simple for this inherently complicated situation. From more 
mathematical arguments we conclude that this classification is best done by 
determining the proximity of a mode to the uncoupled modes in ( c ,  Sk, Ra)-space. 

We find for the particular case of a lead-tin alloy, a t  a constant temperature 
gradient that characterization of the critical mode as convective or morphological is 
determined solely by the ratio of the Sekerka number to the Rayleigh number. We 
conjecture that for a wide range of common alloys and growth conditions in which 
the temperature gradient is constant and the critical wavenumber and Schmidt 
number are large, this ratio determines the nature of the critical mode as convective 
or morphological and, moreover, that it depends most strongly on the segregation 
coefficient. 

We ellucidate the physical mechanisms acting when the morphological mode is 
subject to an imposed flow and buoyancy is absent. From this we are able to 
understand how the wave speed of the neutral modes is determined in terms of the 
lateral transport of solute by the shear flow. 

The imposed shear flow breaks the left-right symmetry and so its effect on the 
coupled convective and morphological modes is to unfold the complicated 
eigenfunction structure. This results in disconnections between the oscillatory mixed 
modes and the different stationary modes. This unfolding effectively uncouples the 
convective and morphological modes. 

The authors are grateful for useful discussions with Dr S. R. Coriell, Professor 
S. H. Davis, Professor D. T. J. Hurle, Dr M. D. Impey, Dr G. B. McFadden and Dr 
D. S. Riley. S. A. F. acknowledges the receipt of a grant from the SERC. 
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